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1: Stellar Limb Darkening and Exoplanet Transits

The first detection of an extra-solar planet transiting

its star was HD 209458b (Charbonneau et al. 2000 ) – a hot, jupiter-
sized planet orbiting ∼ 0.05 AU from its host star. The orientation
of the system is such that the planet briefly eclipses the star when it
passes in front of it, as seen in the original photometric data:

Figure 1: First data on a transit-
ing expolanet, HD209568b, from
Charbonneau et al., 2000 . Filled
circles show the data binned into 5

minute intervals. The lines show model
light curves (which include the limb-
darkening effect) a summing different
planetary radii.

You’ll notice something interesting in the data – the dip in the
transit light curve is curved, not flat-bottomed. This is because of the
limb-darkening effect – i.e., light emitted from the edge of a star is
less intense than light coming from the center. This effect has been
known for over a hundred years from observations of the sun (see
Figure 2). To accurately determine the properties of a transiting exo-
planet (e.g., orbital inclination, planet radius) stellar limb-darkening
must be taken into account.

Modeling stellar limb-darkening is one of the classic problems in
theoretical astrophysics, going back to Schwarzchild’s solution in
1906 and subsequent work by Eddington and Milne.1 In this project, 1 Milne 1921 .

we’ll derive a workable model for exoplanet transit light curves by
solving the radiation transport equation (ala Schwarzchild) to ac-
count for limb darkening.

Figure 2: The sun, showing limb dark-
ening (also limb-reddening)

The Limb Darkening Problem

Limb darkening arises because the light from the edge of the star
is seen at a slant with respect to the normal vector (see figure 3).

http://iopscience.iop.org/1538-4357/529/1/L45/pdf/995832.web.pdf
http://adsabs.harvard.edu/abs/2000ApJ...529L..45C
http://adsabs.harvard.edu/abs/1921MNRAS..81..361M
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To quantify the effect, we will need to solve the radiation transfer
equation to determine the dependence of the specific intensity on the
angle (µ = cos θ) at which it is observed. The atmospheres of stars
like the sun are very thin compared to the radius, so we can use the
radiative transfer equation in plane parallel coordinates:

µ
∂Iν(τz, µ)

∂τz
= Iν(τz, µ)− Sν(τz, µ) (1)

We might think of this as not just one equation, but an infinite num-
ber of differential equations – one for each different frequency ν and
direction µ. To make the problem tractable, we’ll have to make sev-
eral typical approximations.

Approximation #1: The opacity is wavelength independent (grey)

Rg

μ

μ
τ = 0

z

Figure 3: Geometry for the problem. To
find the specific intensity observed near
the edge of a spherical star (top) we
solve the problem for a plane parallel
atmosphere (bottom) and find the
intensity emerging at the equivalent
angle to the normal, µ = cos θ.

In this case, we can drop the ν subscripts in equation 1 and only use
quantities that have been integrated over all frequencies. Of course,
we can not also drop the µ dependence (i.e., assume the radiation
is isotropic) as that would miss the essential physical effect behind
limb-darkening. We can simplify life, though, by adopting a rela-
tively simple form for the angular dependence:

Approximation #2: The angular distribution of I can be described by

I(τz, µ) = I0(τz) + I1(τz)µ (2)

where we require I0 > I1 > 0 for all τz (so that the intensity never
goes negative). This expression is obviously an over-simplification of
the angular dependence of I, which could in principle be a compli-
cated function2 of µ. By specifying this simple form, however, we will 2 At least equation 2 captures one

crucial feature: more radiation is
moving out of the star (µ > 0) then
inward (µ < 0). Our expression
actually represents the appropriate limit
in the optically thick diffusion regime,
as we will discuss later.

no longer need to solve an infinite number of transport equations; in-
stead, we’ll only need two equations to determine the two unknowns:
I0 (the isotropic part) and I1 (the anisotropic part).

a) Write down expressions (in terms of I0, I1) for the mean intensity
J(τz) and the astrophysical flux F(τz). For fun, also write down the
radiation energy density u(τz) and pressure P(τz). What is the ratio
P/u and how does it compare to that of isotropic radiation?3. 3 The ratio f = P/u is called the

Eddington factor and the assumption
f = 1/3 is called the Eddington
approximation.

Now we’ll solve the radiation transfer equation. Since there are two
unknowns (I0 and I1) we’ll use two moments of the transfer equation
to form a complete system of equations:

b) Take the zeroth moment of the radiation transport equation (i.e.,
integrate equation 1 over all angles) and show that the source func-
tion is given by S = J provided we make another assumption:

Approximation #3: The atmosphere is in radiative equilibrium4, such that 4 In the early days, it was not known
whether the energy flux in the at-
mosphere of the sun was carried by
radiation or convection. By solving this
problem we’ll show (as Schwarzchild
did in 1906) that the observed limb
darkening implies that it the atmo-
sphere is indeed radiative.

the flux, F0 = σT4
eff, is constant with τz.

c) Take the first moment of the transport equation and use it to find
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an expression for I(τ, µ) which depends on two constants: Teff, and
some constant of integration.

To determine the constant of integration, we need to specify some
kind of boundary condition. We’ll make another approximation:

Approximation #4: At the surface of the star (τ = 0) the inward directed
flux (i.e. integrated only over the directions −1 < µ < 0) is zero.

This is one of several approximate boundary conditions that might be
chosen. It captures our intuition that the light is streaming out of the
stellar surface, but none is streaming inward.

d) Determine the integration constant to complete the solution. Now
that you know everything, you should be able to plot the limb dark-
ening law for the relative emergent intensity as a function of µ. Com-
pare your solution to the early observations taken by Muller (1897)
shown in Figure 4. Does your calculation indeed suggest that the
solar atmosphere is radiative?

Figure 4: Solutions for the limb dark-
ening law assuming a radiative and a
convective atmosphere. Also shown are
early observations from Muller (1897).
Adapted from K. Schwarzschild (1906)
by J. Aufdenberg . The y-axis plots the
ratio I(τ = 0, µ)/I(τ = 0, µ = 1). Note
that Schwarzschild made slightly differ-
ent approximations than we have, and
so derived a slightly different solution
(I ∝ µ + 1/2, shown as the blue line).
Your solution will actually fit the data
better.

Explaining the Planetary Transit Data

At last we can model (approximately) the light curve of HD209568b.
Assume the orbit has an inclination of 90◦ (i.e., is exactly edge on as
viewed from earth) and that the duration of the transit is 0.12 days.
For our purposes, you can make the approximation that the radius
of the planet Rp is much less than that of the star, R? (i.e., no need
to integrate over the size of the planet). In this case, you won’t get
the sharp edges of the light curve quite right, when the planet moves

http://nexsci.caltech.edu/workshop/2006/talks/Aufdenberg.pdf
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on or off the stellar disk (the ingress and egress marked by w on
figure 5).

e) Write an expression for the transit light curve – i.e., the observed
flux as a function of time (no need to worry about the overall normal-
ization of the flux; just the relative value as in Figure 1 is fine). Plot
your light curve and compare by eye to the observed data in Figure 1.

Comment: You will notice that your light curve has significantly
more curvature than the data shown in Figure 1. That is because
the inclination of HD209568b is not exactly 90◦ and the planet does
not pass exactly along the mid-plane, rather it grazes its host star,
as illustrated in figure 5. Bonus: By thinking a little more about
the geometry, work out how to use a measurement of the curvature
parameter c (defined in figure 5) to determine the inclination of the
orbit, based on your equation for limb-darkening (and assuming the
stellar and orbital radius are given by other means).

Figure 5: Schematic of the shape of the
light curve from an expolanet transit,
taken from Brown et al., (2001) .

Explaining the Sun’s Red Edge

Notice in Figure 2 that the edge of the sun also looks redder then
the center, which is a closely related effect. Let’s calculate how much
redder. To do so we’ll make a further assumption:

Approximation #5: The atmosphere is in LTE, so that the source function
S(τ) is everywhere equal to the blackbody value.

e) Write an expression for the temperature of the atmosphere as a
function of τz (and depending on Teff)5. Now assume that when 5 Your (approximate) solution for the

temperature structure of a radiative
atmosphere can be quite a useful one
for certain problems.

you look at the star at some angle µ, you see roughly a blackbody
spectrum at the temperature at a line of sight optical depth of ' 2/3.
If the effective temperature of the Sun is Teff = 5800 K, how much
“cooler” is the spectrum of radiation from the edge (µ = 0) compared
to the center (µ = 1)?

Comment: If we wanted to derive a more accurate solution for the
limb darkening problem, we could write the angular dependence of
I(τz, µ) as an expansion in Legendre polynomials:

I(τz, µ) = ∑
i=0

Ii(τz)Pi(µ) (3)

What you have done is to solve the problem when keeping only the
first two terms in this series. For each additional higher order term
you include, a new unknown is introduced and you would need to
take another higher moment of the transfer equation to complete the
system of equations.6 6 See Chandrasekhar’s 1960 book for

more. Since the radiation field does not
usually oscillate very rapidly with µ,
you could probably get away with only
the first few terms in the series.

Comment: There are other approximate ways of representing the
angular dependence of I. In the two-stream approximation we assume

http://adsabs.harvard.edu/abs/2001ApJ...552..699B
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that the intensity has one value going up, and another value going
down:

I(τz, µ) = I+(τz)Θ(0, π/2) + I−(τz)Θ(π/2, π) (4)

where Θ(x1, x2) = 1 for x1 < x < x2 and 0 otherwise. Bonus: If you
felt like it, you should be able to use this functional form to solve the
transport equation using a similar approach described above.

The generalization of the two stream approximation would be an
n-stream approximation:

I(τz, µ) =
n

∑
i

IiΘ(µi, µi + ∆µi) (5)

Where we would choose the angles µi and ∆µi to give a favorable
spacing of the n rays. You should easily convince yourself that
J = ∑i Ii∆µi/2. Assuming radiative equilibrium (J = S) the set of
radiative transfer equations then become:

µi
∂Ii(τz)

∂τz
= Ii −

1
2

n

∑
i

Ii∆µi (6)

This is just a system of n coupled linear differential equations which
in principle can be solved (numerically) to determine the Ii(τz). The
higher n, the more accurate the solution. This sort of method of dis-
crete ordinates is a common approach to solving radiation transport
problems on computers.

1. Obscured Active Galactic Nuclei

Figure 6: A snapshot of a 3-D hydro-
dynamical simulation of a dusty torus
of gas formed around an AGN. The
scale of the image box is ∼ 10 par-
secs and the BH is an unresolved
point at the center. Model from
Hopkins and Quataert (2010) ; image
rendered by Nathan Roth.

Accretion onto a supermassive black hole (BH) at the center
of a galaxy can power strong radiation – an active galactic nucleus
(AGN). The BHs powering AGN have masses ∼ 107 − 108 M� and
should radiate mainly in the UV/x-ray. However, in some cases (e.g.,
the Seyfert 2 AGN) strong emission is seen at around ∼ 10 µm. It
is thought that this infrared radiation is due to the absorption and
remission of radiation in dusty gas surrounding the BH. The dusty
region is thought to have a spatial extant of ∼ 1− 10 pc and a shape
like a torus (see figure 1). The origin and properties of AGN dusty
torii are an active area of research, with many efforts to model the
observed IR spectra with radiation transport codes.

In this project, we develop a simple model of obscured AGN.
Although the real systems are clearly aspherical, we’ll solve the sym-
metric analogue – a spherical source surrounded by a spherical en-
velope.7. We’ll assume that BH has mass MBH ∼ 107 M� and emits 7 Our simple setup may be applicable

in other astrophysical contexts, e.g., a
starburst occurring in a dusty galaxy, a
massive star forming in a dusty cloud,
or a supernova exploding inside a
dusty circumstellar region. One would
just need to change the length and
luminosity scale.

a luminosity, LBH, equal to it’s (electron-scattering) Eddington lu-
minosity. We’ll model the source of BH radiation as an isotropically

http://adsabs.harvard.edu/abs/2010MNRAS.407.1529H
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emitting sphere8 of radius Rin ∼ 10 Swarchzhild radii (∼ 2 AU). Sur-

8 Of course, the emission is actually
coming from the accreting material just
outside the BH, which is presumably
disk-like (not spherical) and does not
emit isotropically. But anyway.

rounding the source is a spherical envelope of mainly hydrogen gas
with some dust mixed in. We’ll take the envelope to have a constant
density ρ0 extending from Rin to an outer radius Rout ∼ 10 parsecs
(so Rout � Rin). We’ll assume that radiative heating/cooling dom-
inates the energy exchange in the envelope, so that (given enough
time) the envelope will come into radiative equilibrium.

The optical depth of the envelope (measured radially, from the
center to the edge) is τ0 ' ρ0κRout, where κ ∼ 10 cm2 g−1 is a typ-
ical infrared opacity of dusty gas9, which we will take to be purely 9 The gas and the dust are typically

tightly collisionally coupled (i.e.,
quickly come into thermal equilibrium
with each other) and so we treat them
as a single fluid. By opacity, we thus
mean the cross-section per unit gram
of dusty gas. Most of the mass of this
fluid is from hydrogen, so the cross-
section of this material is σ ' mpκIR
where mp is the proton mass.

absorptive. We’ll solve the radiation transport problem separately for
the two limits: τ0 � 1 (optically thin) and τ0 � 1 (optically thick).
We won’t attempt the intermediate case (τ0 ∼ 1) which is actually the
hardest to solve, since no simplifying approximation to the transport
can be made.

In general, this is a time-dependent problem – i.e., the tempera-
ture and density of the envelope is evolving under the influence of
gravity10 and radiation feedback. Here we’ll make the stationarity 10 You can safely neglect the self-gravity

of the envelope; the gravity of the BH
dominates.

approximation – we take a snapshot in time in which the envelope
structure is held fixed and solve the steady state radiation transport
problem. We’ll check the validity of the assumption as we go.

I. Optically thin case

In the optically thin limit, most photons free-stream through the
envelope without interacting, and the radiation field can be approx-
imated by the value it would have in empty space11. We take the 11 It is true that a fraction ∼ τ0 of the

photons are absorbed in the envelope,
and so the radiation field is not exactly
the same as it would be in empty space,
but let’s not worry about that small
fraction.

opacity to be independent of wavelength.

a) Assume that the specific intensity from the surface of our spherical
source is given by Planck’s function at a temperature Ts. What is Ts?
At around what wavelengths does the BH radiate?

b) Solve for the temperature profile, T(r) (in terms of Ts and Rin) of
the dusty envelope assuming that it is in radiative equilibrium. What
is a characteristic temperature of the envelope?12 At around what 12 Most of the mass of the envelope is at

large radii, so you might evaluate T(r)
at, say, r ∼ Rout/2.

wavelengths does the envelope radiate?

c) Let’s check that our use of the stationarity approximation is rea-
sonable. What is the characteristic time scale, tesc for photons to
escape the dusty envelope? How does this compare to the dynamical
timescale, tdyn (e.g., the time it would take to outer edge of the en-
velope to free-fall into the black hole)? Also check that the timescale,
teq, for the envelope to come into radiative equilibrium is short com-
pared to the dynamical timescale.13 Does it seem safe to assume 13 As a rough test, it will suffice to

look at the value of either the cooling
or heating time for a characteristic
equilibrium temperature at, say, Rout/2.
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the envelope structure is fixed when solving this radiation transport
problem?

II. Optically thick case

Next consider the opposite limit, in which the envelope is optically
thick and the diffusion approximation applies. Continue to assume
the opacity is grey and purely absorptive. The diffusion equation in a
general coordinate system is

F = − c
3κρ
∇u(r) (7)

where F is the flux vector. If we assume that radiative equilibrium
holds, it follows from the zeroth moment of the radiative transfer
equation that

∇ · F = 0 (8)

d) In plane parallel coordinates, the condition of radiative equilib-
rium requires that the flux be constant. Show that in spherical coor-
dinates the assumption of radiative equilibrium requires instead that
the luminosity, L = 4πr2F, is constant with radius.

e) What is the expression for the characteristic time scale, tesc for
photons to escape the dusty envelope in this optically thick case? At
about what value of τ0 does our stationarity approximation become
questionable?

f) Solve the diffusion equation to determine the temperature pro-
file of the dusty envelope T(r) in this optically thick case. You’ll
need to specify a boundary condition – we’ll take it to be that the
temperature is zero at Rrout, the so-called "radiative zero" boundary
condition.14 14 This is not necessarily the best bound-

ary condition. A better one might
be that T(Rout) = Teff, where we
define the effective temperature by
LBH = 4πR2

outσsbT4
eff.

Bonus (optional): Our assumption of a constant density envelope is
a little unrealistic. However, you can easily solve the same diffusion
problem using a power-law density profile ρ(r) = ρ0(r/rin)

−ζ .

g) Plot the two temperature profiles you have derived (optically thin
and optically thick cases) in comparison to each other. For the op-
tically thick case, take τ0 = 100. For the optically thin case take
τ0 = 0.1. Note that dust is sublimated (destroyed) at temperatures
higher than ∼ 1500 K. Within about what radii do expect dust de-
struction to be important?

h): Consider the dusty gas at about the middle of the envelope (r =

Rout/2). How does the temperature you find for the optically thick
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case compare to that of the optically thin case? Argue why the ratio
of these temperatures makes physical sense.

III. Optically thick, non-grey case

i): For real dust, the opacity is not grey. For wavelengths λ > 1 µm,
the wavelength dependence is roughly a power law, κ = κ0(λ/λ0)

−n,
with n ≈ 2. Show that in this case the Rosseland mean opacity
κR(T) ∝ Tn (you don’t need bother to find the constants). Explain
why it makes sense that the mean opacity increases with T.

j): Take the Rosseland mean opacity to be κR = κR,0(T/T0)
2, where

κR,0 = 10 cm2 g−1 and T0 = 1000 K. Find an expression for the
temperature structure in the non-grey, optically thick case.

Comment: Our model is too simple to apply to real obscured AGN,
for many reasons: (1) We have assumed a spherical geometry, when
in reality the envelope is probably a torus; (2) We have assumed the
density distribution is smooth and uniform, while more detailed
models suggest that it is highly clumpy. Nevertheless, our analytic
solutions may be useful for testing full blown radiation transfer
codes. They may also provide some intuition into the results of de-
tailed 3-D calculations (e.g., the optically thin solution might best
correspond to the polar region, where the gas column densities are
lower, while the optically thick solution might better correspond to
the dense equatorial regions.
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